RGD and YIGSR synthetic peptides facilitate cellular adhesion identical to that of laminin and fibronectin but alter the physiology of neonatal cardiac myocytes.
نویسندگان
چکیده
In the mammalian heart, the extracellular matrix plays an important role in regulating cell behavior and adaptation to mechanical stress. In cell culture, a significant number of cells detach in response to mechanical stimulation, limiting the scope of such studies. We describe a method to adhere the synthetic peptides RGD (fibronectin) and YIGSR (laminin) onto silicone for culturing primary cardiac cells and studying responses to mechanical stimulation. We first examined cardiac cells on stationary surfaces and observed the same degree of cellular adhesion to the synthetic peptides as their respective native proteins. However, the number of striated myocytes on the peptide surfaces was significantly reduced. Focal adhesion kinase (FAK) protein was reduced by 50% in cardiac cells cultured on YIGSR peptide compared with laminin, even though beta(1)-integrin was unchanged. Connexin43 phosphorylation increased in cells adhered to RGD and YIGSR peptides. We then subjected the cardiac cells to cyclic strain at 20% maximum strain (1 Hz) for 48 h. After this period, cell attachment on laminin was reduced to approximately 50% compared with the unstretched condition. However, in cells cultured on the synthetic peptides, there was no significant difference in cell adherence after stretch. On YIGSR peptide, myosin protein was decreased by 50% after mechanical stimulation. However, total myosin was unchanged in cells stretched on laminin. These results suggest that RGD and YIGSR peptides promote the same degree of cellular adhesion as their native proteins; however, they are unable to promote the signaling required for normal FAK expression and complete sarcomere formation in cardiac myocytes.
منابع مشابه
Spatiotemporal segregation of endothelial cell integrin and nonintegrin extracellular matrix-binding proteins during adhesion events
Bovine aortic endothelial cell (BAEC) attachments to laminin, fibronectin, and fibrinogen are inhibited by soluble arginine-glycine-aspartate (RGD)-containing peptides, and YGRGDSP activity is responsive to titration of either soluble peptide or matrix protein. To assess the presence of RGD-dependent receptors, immunoprecipitation and immunoblotting studies were conducted and demonstrated integ...
متن کاملLaminin potentiates differentiation of PCC4uva embryonal carcinoma into neurons.
The embryonal carcinoma PCC4uva differentiates into neurons in response to treatment with retinoic acid and dbcAMP. We used this in vitro model system to study the effects of laminin on early neural differentiation. Laminin substrata markedly potentiate neural differentiation of retinoic acid and dbcAMP-treated cultures. Only laminin induced more rapid neural cell body clustering, neurite growt...
متن کاملMelanoma cells selected for adhesion to laminin peptides have different malignant properties.
Laminin is an important promoter of cell-matrix interactions. A number of active laminin domains have been defined by use of synthetic peptides. The Tyr-Ile-Gly-Ser-Arg (YIGSR) sequence on the B1 chain in laminin can decrease tumor growth and metastasis, whereas another sequence containing Ser-Ile-Lys-Val-Ala-Val (SIKVAV) on the A chain can increase tumor growth and metastasis. Here, we selecte...
متن کاملSpatiotemporal Segregation of Endothelial Cell Integrin and Nonintegrin Extracellular MatiN-binding Proteins during Adhesion Events
Bovine aortic endothelial cell (BAEC) attachments to laminin, fibronectin, and fibrinogen are inhibited by soluble arginine-glycine-aspartate (RGD)-containing peptides, and YGRGDSP activity is responsive to titration of either soluble peptide or matrix protein. To assess the presence of RGD-dependent receptors, immunoprecipitation and immunoblotting studies were conducted and demonstrated integ...
متن کاملAngiopoietin-1 promotes cardiac and skeletal myocyte survival through integrins.
Cardiac myocyte loss, regardless of insult, can trigger compensatory myocardial remodeling leading to heart failure. Identifying mediators of cardiac myocyte survival may advance clinical efforts toward myocardial preservation. Angiopoietin-1 limits ischemia-induced cardiac injury. This benefit is ascribed to angiogenesis because the receptor, tie2, is largely endothelial-specific. We propose t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 288 1 شماره
صفحات -
تاریخ انتشار 2005